Потеря якоря карьеры

Потеря якоря. Просмотров: 1320. FANDORIN STUDIO.  Намотка якорей электродвигателей проводом до 0,8 мм. проточка коллектора якоря.

Потери мощности в электрических машинах. Преобразование
механической энергии в электрическую в генераторе и электрической энергии в механическую в двигателе сопровождается некоторыми потерями энергии, которые выделяются в виде тепла, нагревая электрическую машину.
Энергетические диаграммы генератора и двигателя (рис. 145) наглядно показывают баланс мощности в этих машинах. Как видно из них, при работе электрической машины возникают потери мощности: электрические, магнитные, механические и добавочные.
Электрические потери ?Р эл появляются в результате того, что каждая обмотка (в машине постоянного тока обмотки якоря, возбуждения, добавочных полюсов и компенсационная) обладает определенным сопротивлением, препятствующим прохождению по ней электрического тока. Как было показано в § 13, они пропорциональны сопротивлению данной обмотки и квадрату протекающего по ней тока, т. е. сильно возрастают с увеличением нагрузки машины. Электрические потери вызывают нагрев проводов обмоток. К электрическим потерям относятся также потери, возникающие при протекании тока через щетки и через переходное сопротивление между щетками и коллектором; они вызывают нагрев коллектора и щеток.
Магнитные потери ?Р М (потери в стали) возникают в сердечниках якоря и полюсов (главным образом, в полюсных наконечниках) в результате перемагничивания стали этих сердечников и образования в них вихревых токов. Перемагничивание стали сердечника якоря происходит потому, что при вращении якоря каждая его точка попеременно проходит то под северным, то под южным полюсам. Перемагничивание стали полюсных наконечников вызывается в результате изменения магнитной индукции в воздушном зазоре машины в пределах ±?В при вращении зубчатого якоря (рис. 146). При этом в прилегающих к зазору ферромаг-
Рис. 145. Энергетические диаграммы машины постоянного тока при работе ее в режиме генератора (а) и электродвигателя (б)
нитных элементах магнитной системы (полюсных наконечниках и зубцах якоря) индуцируются вихревые токи, изменяющиеся с высокой частотой (1000 Гц и более) и сосредоточенные, главным образом, на их поверхности. Поэтому потери мощности, созданные этими токами, называют поверхностными.
В машинах, имеющих зубцы на статоре и роторе (машины постоянного тока с компенсационной обмоткой, асинхронные и синхронные), при вращении ротора создаются заметные пульсации индукции в зубцах, что также приводит к образованию вихревых токов и соответствующим потерям мощности. Эти потери называют пульсационными. Магнитные потери возникают также и в стальных бандажах, укрепляющих обмотку якоря, которые при вращении якоря пересекают силовые линии магнитного поля машины. Магнитные потери вызывают нагрев сердечника якоря и полюсов, они почти не зависят от нагрузки машины, но резко возрастают с увеличением частоты перемагничивания, т. е. частоты вращения якоря.

Потери энергии при работе ЭП без нагрузки (Мс = 0). Потери мощности в якоре ДПТ и роторе АД определяются по одной формуле (8.11)

Механические потери ?P МХ возникают в результате трения: в подшипниках, щеток по коллектору, деталей машины о воздух в процессе вентиляции. Эти потери вызывают нагрев подшипников, коллектора и щеток, с увеличением нагрузки они возрастают незначительно. При повышении частоты вращения якоря электрической машины механические потери резко возрастают.
Добавочные потери ?P доб обусловливаются различными вторичными явлениями, имеющими место при работе электрических машин под нагрузкой: возникновением вихревых токов в проводниках обмотки якоря, неравномерным распределением тока по сечению проводников и индукции в воздушном зазоре машины, воздействием коммутационных токов (в машинах постоянного тока) и переменных потоков рассеяния (в машинах переменного тока), которые индуцируют вихревые токи в крепежных деталях, и др.
При работе электрической машины под нагрузкой ее проводники, лежащие в пазах ротора и статора, пронизываются продольным и поперечным пазовыми потоками (рис. 147). При вра-
Рис. 146. Распределение индукции в воздушном зазоре машины с зубчатым якорем
Рис. 147. Схема возникновения продольных (а) и поперечных (б) потоков
Рис. 148. Вытеснение тока в верхнюю часть проводников обмотки якоря (а) и распределение плотности тока ?i по их высоте h (б)
щении якоря эти потоки индуцируют в проводниках вихревые токи, так как якорь, непрерывно перемещаясь, проходит под различными полюсами, вследствие чего все время изменяются и пронизывающие его продольный и поперечный пазовые потоки. То же происходит и при изменении тока в проводниках, т. е. нагрузки машины.
Вихревые токи не только увеличивают электрические потери в проводниках обмоток, но и приводят к неравномерному распределению тока по сечению проводников, вызывая вытеснение тока в более удаленные от дна паза слои. Это явление возникает из-за действия индуцируемых поперечными пазовыми потоками э. д. с. самоиндукции e L (рис. 148, а), которые стремятся противодействовать прохождению по проводникам тока нагрузки i я. В нижних слоях каждого проводника индуцируются большие э. д. с. e L, чем в верхних, так как их охватывает большое количество силовых магнитных линий (от нижней части паза до рассматриваемого слоя). Поэтому ток, проходящий по проводникам, несколько вытесняется в верхнюю часть и плотность тока ?i, этой части увеличивается (рис. 148,б). В этом отношении условия прохождения постоянного тока по проводникам обмотки якоря аналогичны условиям прохождения переменного тока, который, как это будет подробно рассмотрено ниже, всегда стремится проходить по наружным слоям проводника. Неравномерное распределение тока по поперечному сечению проводника создает добавочные потери мощности, так как при этом как бы уменьшается площадь поперечного сечения и увеличивается электрическое сопротивление проводников.

Глава I. Всегда ли звенели якоря? Якорные камни. Якоря из камня и дерева.  452 с. 40. Xабалов Н. А. Якорное устройство и меры предупреждения потерей якорей.

Для уменьшения добавочных потерь, связанных с этим явлением, в тяговых двигателях стремятся уменьшить высоту проводников обмотки якоря. Для этого проводники разделяют по высоте паза на две-три параллельно соединенные части (рис. 149, а) или располагают их в пазах плашмя (рис. 149,б). При разделении проводников на несколько частей каждую из них изолируют отдельно, для того чтобы вихревые токи замыкались только в пределах одной части.
Коэффициент полезного действия. Соотношение между потребляемой и отдаваемой машиной мощностями характеризуется коэффициентом полезного действия:
для генератора
? = P эл/P мх = P эл/(P эл+?P)
для двигателя
? = P мх/P эл = P мх/(P мх+?P)
где ?Р — суммарные потери мощности.
К. п. д. стационарных машин постоянного тока колеблется в зависимости от мощности машины в пределах от 0,75 до 0,95 (машины большой мощности имеют более высокий к. п. д.). К. п. д. тяговых двигателей составляет 0,86—0,92, к. п. д. тепловозных генераторов — 0,92—0,94.
При изменении нагрузки отдельные виды потерь изменяются по-разному. Электрические потери ?Р эл в обмотках, по которым проходит ток нагрузки I я (обмотках якоря, добавочных полюсов и компенсационной), изменяются пропорционально I я, электрические потери в щеточном контакте ?Р щ.эл — пропорционально I я, а магнитные ?Р м и механические ?Р мх остаются практически постоянными — такими же, как и при холостом ходе, если напряжение машины U и частота ее вращения п не изменяются. По этому принципу все виды потерь можно разделить на две группы: постоянные потери ?P пост = ?Р м +?Р мх и переменные ?Р пер = ?Р эл + ?Р щ.эл, которые можно считать пропорциональными квадрату тока нагрузки I я
2 (обычно значение потерь ?Р щ.эл мало по сравнению с ?Р эл) .
Формула для определения к. п. д. принимает вид
? = P 2/P 1 = P 2 / (P 2+?Р пер+?P пост)
где
Р 2 — полезная мощность, отдаваемая машиной (Р ЭЛ в генераторах и Р МХ— электродвигателях) ;
P 1 — потребляемая машиной мощность.
При холостом ходе полезная мощность Р 2 = 0, поэтому к. п. д. тоже равен нулю (рис. 150). При малых нагрузках магнитные и механические потери, оставаясь постоянными, имеют относительно большое значение по сравнению с полезной мощностью и к. п. д. незначителен. В дальнейшем с увеличением нагрузки полезная мощность Р 2 и к. п. д. увеличиваются и при некотором значении Р 2кР к. п. д. достигает максимального значения. Этот режим соответствует равенству ?P пост = ?Р пер (точка А на рис. 150). Обычно максимум к. п. д. имеет место при 75—85 % номинальной мощности. При дальнейшем возрастании нагрузки к. п. д. начинает падать, так как рост электрических потерь, пропорциональный квадрату
Рис. 149. Вертикальное (а) и горизонтальное (б) размещение проводников обмотки якоря в пазах
Рис. 150. Зависимости к.п.д. и потерь мощности от полезной мощности
тока нагрузки I
2 я, начинает превышать прирост полезной мощности, пропорциональный только первой степени от этого тока.
В зависимости от назначения локомотива целесообразно, чтобы максимальное к. п. д. электродвигателей было при различных нагрузках. Это обеспечивают при проектировании благодаря перераспределению отдельных видов потерь мощности. Например, для тяговых двигателей электропоездов, работающих в условиях частых пусков с большими токами, выгоднее, чтобы максимальный к. п. д. располагался в зоне больших нагрузок, что достигают путем снижения электрических потерь. Для двигателей электровозов и тепловозов, работающих преимущественно при токах, меньших номинального, стремятся, чтобы максимальный к. п. д. находился в зоне средних токов. Добиться этого можно уменьшением магнитных и механических потерь.
Нагревание электрических машин. Нагрузочная способность электрических машин в большинстве случаев определяется условиями нагревания, так как повышение температуры является главной причиной, ограничивающей мощность машины при длительных нагрузках. С увеличением нагрузки возрастают потери энергии в машине, увеличивается количество выделяющегося тепла и при чрезмерной нагрузке температура отдельных ее частей может превысить допустимые пределы.
Процессы нагревания и охлаждения в электрических машинах всех типов подчиняются общим законам, так как любую электрическую машину можно в первом приближении рассматривать как некоторое однородное тело. Тепло, выделяющееся в электрической машине, частично затрачивается на повышение температуры машины, а

потери в меди якоря — [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

. Коэффициент полезного действия, о.е.: . Ток обмотки якоря, А: . Потери мощности в обмотке якоря, кВт

Потеря якоря xD. Это была потеря из потерь =) Вечером наше судно брало калпит ( продукты). Перед этим мы встали на рейд, на якорь.